数控系统的配置伺服控制单元的选择数控系统的位置控制方式
开环控制系统:采用步进电机作为驱动部件,没有位置和速度反馈器件,所以控制简单,价格低廉,但它们的负载能力小,位置控制精度较差,进给速度较低,主要用于经济型数控装置。
半闭环和闭环位置控制系统:采用直流或交流伺服电机作为驱动部件,可以采用内装於电机内的脉冲编码器,旋转变压器作为位置/速度检测器件来构成半闭环位置控制系统,也可以采用直接安装在工作�_的光栅或感应同步器作为位置检测器件,来构成高精度的全闭环位置控制系统。
由于螺距误差的存在,使得从半闭环系统位置检测器反馈的丝杠旋转角度变化量,还不能精确地反映进给轴的直线运动位置。但是,经过数控系统对螺距误差的补偿後,它们也能达到相当高的位置控制精度。与全闭环系统相比,它们的价格较低,安装在电机内部的位置反馈器件的密封性好,工作更加稳定可靠,几乎无需维修,所以广泛地应用于各种类型的数控机床。
直流伺服电机的控制比较简单,价格也较低,其主要缺点是电机内部具有机械换向装置,碳刷容易磨损,维修工作量大。运行时易起火花,使电机的转速和功率的提高较为困难。
交流伺服电机是无刷结构,几乎不需维修,体积相对较小,有利于转速和功率的提高,目前已在很大�围内取代了直流伺服电机。
伺服控制单元的种类
分离型伺服控制单元,其特点是数控系统和伺服控制单元相对独立,也就是说,它们可以与多种数控系统配用,NC系统给出的指令是与轴运动速度相关的DC电压(例如0-10V),而从机床返回的是与NC系统匹配的轴运动位置检测信号(例如编码器?感应同步器等输出信号)。伺服数据的设定和调整都在伺服控制单元侧进行(用电位器调节或通过数字方式输入)。
串行数据传输型伺服控制单元,其特点是NC系统与伺服控制单元之间的数据传送是双向。与轴运动相关的指令数据、伺服数据和报警信号是通过相应的时钟信号线、选通信号号、发送数据线、接收数据线、报警信号线传送。从位置编码器返回NC装置的有运动轴的实际位置和状态等信息。
网络数据传输型伺服控制单元,其特点是轴控制单元密集安装在一起,由一个公用的DC电源单元供电。NC装置通过FCP板上的网络数据处理模块的连接点SR、ST与各个轴控制单元(子站)的网络数据处理模块的SR、ST点串联,组成伺服控制环。各个轴的位置编码器与轴控制单元之间是通过二根高速通信线连接,反馈的信息有运动轴位置和相关的状态信息。
串行数据传输型和网络数据传输型伺服控制单元的伺服参数在NC装置中用数字设定,开机初始化时装入伺服控制单元,修改和调整都十分方便。
网络数据传输型伺服控制单元(例如大隈OSP-U10/U100系统)在相应的控制软件配合下,具有实时的调整能力,例如在Hi-G型定位加减速功能中,可以根据电机的速度和扭矩特性求出相应的函数,再以其函数控制高速定位时的加减速度,从而抑制高速定位时可能引起的振动。
定位速度的提高可以缩短非切削时间,提高加工效率。又如在Hi-Cut型进给速度控制功能中,系统可以在读入零件加工程序後,自动识别数控指令要求加工的零件形状(圆弧、棱边等),自动调节加工速度,使之最佳化,进而实现高速高精度加工。
采用高速微处理器和专用数字信号处理机(DSP)的全数字化交流伺服系统出现後,硬件伺服控制变为软件伺服控制,一些现代控制理论的先进算法得到实现,进而大大地提高了伺服系统的控制性能。
伺服控制单元是数控系统中与机械直接相关联的部件,它们的性能与机床的切削速度和位置精度关系很大,其价格也占数控系统的很大部分。相对来说,伺服部件的故障率也较高,约占电气故障的70%以上,所以选配伺服控制单元十分重要。