排列的定义及其计算公式:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A(n,m)表示。A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!此外规定0!=1
组合的定义及其计算公式:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号C(n,m)表示。C(n,m)=A(n,m)∧2/m!=A(n,m)/m!;C(n,m)=C(n,n-m)。(其中n≥m)
其他排列与组合公式从n个元素中取出m个元素的循环排列数=A(n,m)/m=n!/m(n-m)!。n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!×n2!×...×nk!)。k类元素,每类的个数无限,从中取出m个元素的组合数为C(m+k-1,m)。